Synthesis of Hindered Hydrazones and Their Reaction with Thionyl Chloride

Mohamed I. Hegab, Nasser A. Hassan, Emad M. El-Telbani, Ibrahim S. Ahmed Farag, and Farouk M. E. Abdel-Megeid

Department of Photochemistry, National Research Centre, Dokki, Cairo, Egypt

Received 26 March 2002; revised 7 June 2002

ABSTRACT: Hydrazones **12a–c** and ketazines **13a–c** were prepared by the reaction of ketones **11a–c** with hydrazine hydrate depending on the temperature and the reaction time. Some ketone (aryl)hydrazone derivatives **14a,c,e** reacted with thionyl chloride to afford the chlorothiadiazoline derivatives **15a–c**. Surprisingly, the chlorine atom in the latter compounds was found to undergo smooth nucleophilic substitution, and by boiling these compounds in absolute ethanol gave the corresponding ethoxythiadiazoline derivatives **16a–c**. The structure of the ethoxythiadiazoline **16b** was confirmed by single crystal X-ray determination. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:223–228, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10125

INTRODUCTION

Harradence et al. [1] have reported that when an ethanolic solution of 4-chromanone was refluxed with an aqueous solution of hydrazine sulfate and sodium acetate, the ketazine **1a** was formed. In a similar reaction of the corresponding 4-chromanone derivatives with hydrazine hydrate, the ketazine derivatives **1b–d** were obtained as hydrates, which were converted into the anhydrous ketazines on boiling with acetic acid [2]. Recently, El-Desoky [3] reported that the ketazine **1e** could not be formed

directly from the reaction of the corresponding 4chromanone derivative with hydrazine hydrate, but could be formed from the reaction of ylidene malononitrile $\mathbf{2}$ with hydrazine hydrate.

a, $R^1 = R^2 = R^3 = R^4 = R^5 = R^6 = H$ **b**, $R^1 = CH_3$, $R^2 = R^3 = R^3 = R^6 = H$, $R^4 = OCH_3$ **c**, $R^1 = CH_3$, $R^2 = H$, $R^4R^5 = -CH_2CH_2O$ -, $R^3 = R^6 = OCH_3$ **d**, $R^1 = CH_3$, $R^2 = H$, $R^4R^5 = -CH=CHO$ -, $R^3 = R^6 = OCH_3$ **e**, $R^1 - R^2 = (CH_2)_5$, $R^4R^5 = -CH=CHO$ -, $R^3 = R^6 = OCH_3$

Also, it has been reported [4–7] that the reactions of thionyl chloride with some types of ketone (aryl)hydrazones **3–6** gave the 1,2,3-thiadiazol-*S*-oxides **7**, **8** or the 1,2,3-thiadiazole derivatives **9**, **10**, respectively (Scheme 1).

These results prompted us to study such reactions with some hindered [8] ketones, namely 3-ethyl-1,2,3,4-tetrahydro-3-methylnaphthalen-1-one

Correspondence to: Farouk M. E. Abdel-Megeid; e-mail: faroukezat@yahoo.com.

^{© 2003} Wiley Periodicals, Inc.

SCHEME 1

(**11a**) [9], 3,3-dimethylchroman-4-one (**11b**) [10], and spirochroman (2,1')cyclohexane-4-one (**11c**) [11].

RESULTS AND DISCUSSION

When the ketones **11a–c** were treated with hydrazine hydrate (99%) in absolute ethanol under gentle reflux for 3 h they gave the corresponding hydrazones **12a–c** in moderate yields (Scheme 2). The structures of the hydrazones **12a–c** were confirmed by spectral data and microanalytical data. The IR spectra showed absorption frequencies at 3325–3285 cm⁻¹ (ν_{NH2}) and 1605–1595 cm⁻¹ ($\nu_{\text{C=N}}$), the ¹H NMR spectra showed the signal at δ 5.34–5.37 ppm (br s, 2H, NH₂, exchangeable with D₂O), and the MS spectra showed the molecular ion peak as the base peak (M⁺, 100%).

It was noticed that when the hydrazone derivatives **12a–c** were stored in a closed vial for four weeks at room temperature, they were converted into the corresponding ketazines **13a–c**. However, the latter could be obtained in good yields from the reaction of the ketone and hydrazine hydrate in absolute ethanol under brisk reflux for 6 h (Scheme 2). The spectral data and microanalytical data verified the structures of the ketazine derivatives. The MS

SCHEME 2

spectra showed the molecular ion peak as the parent peak.

Five new ketone arylhydrazone derivatives **14a,b,d–f** were prepared by the reaction of the ketones **11a–c** with arylhydrazines in ethanol containing acetic acid. The preparation of the hydrazone **14c** was reported previously by Auwers and Mauss [12]. The ¹H NMR spectra of **14a–f** showed the NH signals at δ 10.01–10.38, which are exchangeable with D₂O.

When compounds **14a,c,e** were treated with thionyl chloride at 20°C, they afforded the corresponding chlorothiadiazolines **15a–c**, respectively (Scheme 3).

a, X = CH₂, R¹ = CH₃, R² = C₂H₅, Ar = 4-NO₂C₆H₄ **b**, X = O, R¹ = R² = CH₃, Ar = 4-NO₂C₆H₄ **c**, X = O, R¹R² = (CH₂)₅, Ar = 4-NO₂C₆H₄

SCHEME 3

Angles of 16b

TABLE 1 Crystal Data, Bond Lengths, and Bond and Torsion

FIGURE 1 Single crystal X-ray structure of 16b.

The structures of **15a–c** were established by the spectral data as well as the microanalytical data. The ¹H NMR spectra indicated the absence of the NH and the methylene protons. The ¹H NMR spectrum of compound **15a** showed the presence of the two diasteriomers (see Experimental Section). The MS spectra of 15a-c showed the ion M^+ – Cl as the base peak (100%). Surprisingly, when **15b** was crystallized from ethanol it gave the ethoxythiadiazoline 16b. This means that the chlorine atom can be easily replaced by a nucleophile. So, when **15a–c** were boiled in ethanol for $\frac{1}{2}$ h they gave the ethoxythiadiazolines **16a–c** (Scheme 3). The structures of the latter compounds were verified by microanalytical data and spectral data. By X-ray analysis of a single crystal, the S configuration of **16b** (Fig. 1, Table 1) was established. The ¹H NMR spectrum of the compound 16a showed the presence of the two diasteriomers (see Experimental Section). To our knowledge, these types of chlorothiadiazoline derivatives **15a–c** and consequently the ethoxythiadiazoline derivatives 16a-c have not been reported in the literature.

EXPERIMENTAL

The melting points are uncorrected. Microanalyses were performed by the Central Services Laboratory, National Research Centre, Cairo. ¹H NMR spectra were taken in a Varian Gemini 200 MHz spectrometer with CDCl₃ and DMSO- d_6 as solvents (Cairo University, Faculty of Science). EI (70 eV). Mass spectra were recorded on a G. C. MSQP 1000 Ex Shmadzu spectrometer, National Research Centre. IR spectra were obtained with PU 9712 infrared spectrophotometer for neat samples (for liquids) or KBr wafers (for solid); National Research Centre, Dokki, Cairo).

Crystal data		
Crystal system	Triclinic	
Space group		
a (A)	7.3610 (5)	
<i>b</i> (A)	11.3212 (6)	
<i>c</i> (Å)	13.1357 (7)	
α (°)	103.445	
β (°)	105.962	
γ (°)	108.238	
V (Å ³)	936.79 (9)	
Z	2	
D _x (g cm ⁻³)	1.366	
R	0.048	
wR	0.057	
Bond length (Å)		
O2-C17	1.4072 (6)	
N4—N7	1.3615 (6)	
N4-C13	1.2877 (6)	
N5-06	1.2255 (6)	
N5-012	1.2226 (6)	
N5-C16	1.3833 (6)	
Bond and Iorsion ang	les (°)	
N/	111.11 (4)	
N4-013-08	125.11 (5)	
	111.00 (E)	
N4_N7_C15	101 00 (0)	
N5-C16-C11	119 37 (6)	
N5-C16-C20	119.37 (0)	
N7-N4-C13-C8	-176 44 (8)	
C13 - N4 - N7 - C15	-168.47 (7)	
N7-N4-C13-C7	6.06 (5)	

N7–N4–C13–C7 6.06 (5) The single crystal for the X-ray diffraction analysis of

The single crystal for the X-ray diffraction analysis of **16b** was obtained by slow evaporation of the corresponding ethanol solution. The X-ray determination was performed by the Central Services Laboratory, National Research Centre, Cairo.

Preparation of Hydrazones **12a–c**

A solution of the ketone **11a–c** (0.01 mol) and hydrazine hydrate 99% (0.01 mol) in absolute ethanol (Merck) was heated under gentle reflux for 3 h. Evaporation of the solvent under reduced pressure gave the hydrazones **12a–c**.

3-Ethyl-3-methyl-1,2,3,4-tetrahydronaphthalen-1one Hydrazone (**12a**). Colorless oil (1.50 g, 75%) purified by column chromatography (silica gel, Merck 60, particle size 0.06–0.20 mm, ethyl acetate/petroleum ether 40–60°C 1:10). Anal calcd for C₁₃H₁₈N₂ (202.29): C, 77.18%; H, 8.96; N, 13.84%. Found: C, 77.48; H, 8.79; N, 13.78%. IR (neat): $\nu_{\rm NH2}$ 3320, 3285; $\nu_{\rm C=N}$ 1600 cm⁻¹. ¹H NMR (CDCl₃): δ 0.89 (t, J = 8.00 Hz, 3H, CH_3CH_2), 0.98 (s, 3H, CH_3), 1.22 (q, J = 8.00 Hz, 2H, CH_2CH_3), 2.55 (d, J = 18.00 Hz, 1H, 4- CH_aH_b), 2.63 (d, J = 18.00 Hz, 1H, 4- CH_aH_b), 3.45 (s, 2H, CH_2), 5.34 (br s, 2H, NH_2 , exchangeable with D₂O), 7.28–7.42 (m, 3H, ArH), 8.23 ppm (d, J = 8.00 Hz, 1H, ArH). MS (EI): m/z (%) 202 (M, 100), 187 (8), 173 (37), 156 (30), 143 (13), 128 (16), 116 (13), 91 (60).

2,2-Dimethylchroman-4-one Hydrazone (12b). Colorless oil (1.10 g, 60%), purified by column chromatography (silica gel, Merck 60, particle size 0.06– 0.20 mm, ethyl acetate/petroleum ether 40–60°C 1:10). Anal calcd for C₁₁H₁₄N₂O (190.24): C, 69.44; H, 7.41; N, 14.72%. Found: C, 69.14; H, 7.39; N, 14.65%. IR (neat): ν_{NH2} 3310, 3275; $\nu_{\text{C=N}}$ 1595 cm⁻¹. ¹H NMR (CDCl₃): δ 1.40 (s, 6H, 2 CH₃), 2.70 (s, 2H, CH₂), 5.37 (br s, 2H, NH₂, exchangeable with D₂O), 7.26–7.31 (m, 3H, ArH), 8.14 ppm (d, *J* = 8.05 Hz, 1H, ArH). MS (EI): *m*/*z* (%) 190 (M, 91), 176 (37), 161 (100), 121 (52), 92 (35).

Spirochroman(2,1')cyclohexane-4-one Hydrazone (12c). Colorless crystals (1.80 g, 80%), crystallized from *n*-hexane; mp 73–75°C. Anal calcd for $C_{14}H_{18}N_2O$ (230.30): C, 73.01; H, 7.87; N, 12.16%. Found: C, 72.91; H, 7.80; N, 12.01%. IR (KBr): ν_{NH2} 3295, 3215; $\nu_{C=N}$ 1605 cm⁻¹. ¹H NMR (CDCl₃): δ 1.16– 1.90 (m, 10H, (CH₂)₅), 2.70 (s, 2H, CH₂), 5.35 (br s, 2H, NH₂, exchangeable with D₂O), 7.26–7.32 (m, 3H, ArH), 8.10 ppm (d, J = 8.05 Hz, 1H, ArH). MS (EI): m/z (%) 230 (M, 66), 214 (100), 199 (13), 187 (30), 172 (44), 156 (17), 135 (15), 120 (20), 91 (19).

Preparation of Ketazines 13a-c

A solution of the ketone 11a-c (0.01 mol) and hydrazine hydrate 99% (0.01 mol) in absolute ethanol (Merck) was heated under brisk reflux for 6 h. Evaporation of the solvent and crystallization of the residue from ethanol afforded the pure ketazines 13a-c.

3-*Ethyl*-3-*methyl*-1,2,3,4-*tetrahydronaphthalen*-1azine (**13a**). Dark yellow crystals (3.1 g, 85%), mp 117–119°C. Anal calcd for C₂₆H₃₂N₂ (372.54): C, 83.82; H, 8.66; N, 7.52%. Found: C, 83.72; H, 8.61; N, 7.39%. IR (KBr): $\nu_{C=N}$ 1605 cm⁻¹. ¹H NMR (CDCl₃): δ 0.87 (t, J = 8.00 Hz, 6H, 2 *CH*₃CH₂), 0.98 (s, 6H, 2 CH₃), 1.20 (q, J = 8.00 Hz, 4H, 2 *CH*₂CH₃), 2.54 [d, J = 18.00 Hz, 2H, 2 (4- & 4'-CH_aH_b)], 2.63 [d, J = 18.00 Hz, 2H, 2 (4- & 4'-CH_aH_b)], 3.44 (s, 4H, 2 CH₂), 7.28–7.44 (m, 6H, ArH), 8.23 ppm (d, J = 8.00Hz, 2H, ArH). MS (EI): *m*/z (%) 273 (M + H, 88), 372 (M, 78), 357 (92), 344 (84), 343 (69), 329 (18), 315 (18), 301 (32), 287 (15), 186 (62), 158 (100), 143 (91), 128 (85), 115 (86).

2,2-Dimethylchroman-4-azine (**13b**). Dark yellow crystals (2.60 g, 76%), mp 191–193°C. Anal calcd for C₂₂H₂₄N₂O₂ (348.43): C, 75.83; H, 6.94; N, 8.04%. Found: C, 75.55; H, 6.82; N, 7.85%. IR (KBr): $\nu_{C=N}$ 1600 cm⁻¹. ¹H NMR (CDCl₃): δ 1.40 (s, 12H, 4 CH₃), 3.00 (s, 4H, 2 CH₂), 6.88–7.01 (m, 4H, ArH), 7.26– 7.35 (m, 2H, ArH), 8.16 ppm (d, J = 8.18 Hz, 2H, ArH). MS (EI): *m*/*z* (%) 348 (M, 41), 333 (100), 173 (24), 160 (29), 120 (11), 91 (19).

Spirochroman(2,1')cyclohexane-4-azine (13c). Dark yellow crystals (3.3 g, 80%), mp 174–177°C. Anal calcd for C₂₈H₃₂N₂O₂ (428.56): C, 78.46; H, 7.52; N, 6.53%. Found: C, 78.28; H, 7.48; N, 6.51%. IR (KBr): $\nu_{C=N}$ 1600 cm⁻¹. ¹H NMR (CDCl₃): δ 1.24–1.94 (m, 20H, 2 (CH₂)₅), 2.95 (s, 4H, 2 CH₂), 6.91–7.00 (m, 4H, ArH), 7.26–7.36 (m, 2H, ArH), 8.13 ppm (d, J = 8.18 Hz, 2H, ArH). MS (EI): m/z (%) 428 (M, 74), 413 (60), 213 (100), 199 (40), 172 (60), 156 (17), 120 (25), 91 (30).

Preparation of Arylhydrazones 14a-f

A solution of the ketones 11a-c (0.01 mol) and the arylhydrazine (0.01 mol) in ethanol (100 ml) containing glacial acetic acid (1 ml) was boiled under reflux for 6 h. After cooling, the solid was collected and crystallized from ethanol to give the hydrazones 14a-f.

3-*Ethyl*-3-*methyl*-1,2,3,4-*tetrahydronaphthalen*-1one (4-Nitrophenyl)hydrazone (**14a**). Yellowishbrown crystals (2.00 g, 62.5%), mp 168–170°C. Anal calcd for C₁₉H₂₁N₃O₂ (323.38): C, 70.56; H, 6.54; N, 12.99%. Found: C, 70.32; H, 6.48; N, 12.69%. IR (KBr): ν_{NH} 3345; $\nu_{\text{C=N}}$ 1608 cm⁻¹. ¹H NMR (CDCl₃): δ 0.83 (t, J = 8.00 Hz, 3H, CH_3 CH₂), 0.92 (s, 3H, CH₃), 1.33 (q, J = 8.00 Hz, 2H, CH_2 CH₃), 2.53 (d, J = 18.00 Hz, 1H, 4-CH_aH_b), 2.65 (d, J = 18.00 Hz, 1H, 4-CH_aH_b), 3.37 (s, 2H, CH₂), 7.17–7.41 (m, 6H, ArH), 8.13 ppm (d, J = 8.00 Hz, 2H, ArH), 10.30 (s, H, NH, exchangeable with D₂O). MS (EI): m/z (%) 323 (M, 100), 299 (4), 170 (5), 156 (15), 130 (15), 116 (21), 91 (8).

3-Ethyl-3-methyl-1,2,3,4-tetrahydronaphthalen-1one (2,4,6-Trichlorophenyl)hydrazone (**14b**). The compound (purified by column chromatography on silica gel, Merck 60, particle size 0.06–0.20 mm, ether/petroleum ether 40–60°C 1:10) was isolated (2.20 g, 60%) as a brownish oil. Anal calcd for $C_{19}H_{19}Cl_3N_2$ (381.73): C, 59.77; H, 5.01; N, 7.34%. Found: C, 59.38; H, 4.86; N, 7.20%. IR (neat): $\nu_{\rm NH}$ 3342; $\nu_{\rm C=N}$ 1598 cm⁻¹. ¹H NMR (CDCl₃): δ 0.82 (t, J = 8.00 Hz, 3H, CH_3 CH₂), 0.98 (s, 3H, CH₃), 1.41 (q, J = 8.00 Hz, 2H, CH_2 CH₃), 2.55 (d, J = 18.00 Hz, 1H, 4-C H_a H_b), 2.59 (d, J = 18.00 Hz, 1H, 4-CH_aH_b), 3.40 (s, 2H, CH₂), 7.10–7.43 (m, 5H, ArH), 8.13 (d, J = 8.00 Hz, 1H, ArH), 10.08 ppm (s, H, NH, exchangeable with D₂O). MS (EI): m/z (%) 386 (M, 3 Cl³⁷, 25), 384 (M, 2 Cl³⁷ Cl³⁵, 80), 382 (M, Cl³⁷ 2 Cl³⁵, 90), 380 (M, 3 Cl³⁵, 98), 371 (4), 369 (12), 367 (28), 365 (40), 357 (5), 355 (23), 353 (34), 351 (49), 346 (98), 315 (44), 274 (26), 208 (40), 195 (97), 187 (25), 170 (97), 167 (95), 159 (23), 143 (96), 131 (40), 128 (100), 110 (86), 89 (47).

2,2-Dimethylchroman-4-one (4-Nitrophenyl)hydrazone (**14c**). Dark yellow crystals (2.69 g, 85%), mp 192–194°C (literature [11] 193–194°C). Anal calcd for C₁₇H₁₇N₃O₃ (311.33): C, 65.57; H, 5.50; N, 13.49%. Found: C, 65.35; H, 5.40; N, 13.28%. IR (KBr): $\nu_{\rm NH}$ 3355; $\nu_{\rm C=N}$ 1616 cm⁻¹. ¹H NMR (CDCl₃): δ 1.45 (s, 6H, 2 CH₃), 2.72 (s, 2H, CH₂), 6.98–7.43 (m, 6H, ArH), 8.09 (d, *J* = 8.01 Hz, 2H, ArH) 10.12 ppm (s, 1H, NH, exchangeable with D₂O). MS (EI): *m*/*z* (%) 311 (M, 80), 296 (100), 281 (60), 235 (40), 159 (28), 121 (52), 91 (35).

2,2-Dimethylchroman-4-one (2,4,6-Trichlorophenyl)hydrazone (14d). Yellowish-green crystals (2.90 g, 83%), mp 138–140°C. Anal calcd for $C_{17}H_{15}Cl_3N_2O$ (369.68): C, 55.22; H, 4.09; N, 7.57%. Found: C, 55.01; H, 3.98; N, 7.52%. IR (KBr): ν_{NH} 3355; $\nu_{C=N}$ 1616 cm⁻¹. ¹H NMR (CDCl₃): δ 1.46 (s, 6H, 2 CH₃), 2.72 (s, 2H, CH₂), 6.84–6.96 (m, 3H, ArH), 7.19–7.34 (m, 2H, ArH), 7.98 (d, J = 8.01 Hz, 1H, ArH) 10.01 ppm (s, 1H, NH, exchangeable with D₂O). MS (EI): *m/z* (%) 374 (M, 3 Cl³⁷, 4), 372 (M, 2 Cl³⁷ Cl³⁵, 31), 370 (M, Cl³⁷ 2 Cl³⁵, 98), 368 (M, 3 Cl³⁵, 100), 357 (7), 355 (28), 353 (28), 333 (25), 194 (10), 174 (11), 159 (12).

Spirochroman(2,1')cyclohexane-4-one (4-Nitrophenyl)hydrazone (**14e**). Yellowish-brown crystals (2.80 g, 80%), mp 245–248°C. Anal calcd for $C_{20}H_{21}N_3O_3$ (351.39): C, 68.35; H, 6.02; N, 11.96%. Found: C, 68.10; H, 5.92; N, 11.75%. IR (KBr): ν_{NH} 3322; $\nu_{C=N}$ 1598 cm⁻¹. ¹H NMR (CDCl₃): δ 1.33–1.77 (m, 10H, (CH₂)₅), 2.62 (s, 2H, CH₂), 6.90–7.03 (m, 3H, ArH), 7.19–7.27 (m, 3H, ArH), 8.20 (d, *J* = 8.00 Hz, 2H, ArH), 10.38 ppm (br s, 1H, NH, exchangeable with D₂O). MS (EI): m/z (%) 351 (M, 100), 335 (24), 326 (11), 306 (15), 284 (13), 277 (17), 260 (11), 134 (15), 115 (25), 91 (9).

Spirochroman(2,1')cyclohexane-4-one (2,4,6-Trichlorophenyl)hydrazone (**14f**). The compound (purified by column chromatography on silica gel, Merck 60, particle size 0.06-0.20 mm, ether/petroleum ether 40-60°C 1:10) was isolated (2.80 g, 76%) as brownish oil. Anal calcd for C₂₀H₁₉Cl₃N₂O (409.74): C, 58.62; H, 4.67; N, 6.83%. Found: C, 58.35; H, 4.60; N, 6.79%. IR (neat): $\nu_{\rm NH}$ 3315; $\nu_{C=N}$ 1600 cm⁻¹. ¹H NMR (CDCl₃): δ 1.32–1.77 (m, 10H, (CH₂)₅), 2.68 (s, 2H, CH₂), 6.91–7.02 (m, 3H, ArH), 7.19–7.35 (m, 2H, ArH), 8.10 (d, *J* = 8.00 Hz, 1H, ArH), 10.03 ppm (s, 1H, NH, exchangeable with D₂O). MS (EI): *m*/*z* (%) 414 (M, 3 Cl³⁷, 3), 412 (M, 2 Cl³⁷ Cl³⁵, 14), 410 (M, Cl³⁷ 2 Cl³⁵, 30), 408 (M, 3 Cl³⁵, 38), 216 (62), 190 (36), 185 (38), 179 (16), 173 (82), 159 (20), 145 (15), 131 (21), 121 (100), 91 (35).

Preparation of Chlorothiadiazolines 15a-c

Hydrazone **14** (0.01 mol) was added portionwise to thionyl chloride (20 ml) with stirring. The mixture was stirred at room temperature for 10 h. The excess of thionyl chloride was removed under reduced pressure and recrystallization from ethyl acetate afforded the corrresponding chlorothiadiazolines **15a–c**.

(3aRS, 4RS) 3a-Chloro-4-ethyl-4-methyl-2-(4-nitrophenyl)-3a,4,5,9b-tetrahydronaphtho[1,2-d]- $\Delta^{1,9b}$ -[1,2,3]thiadiazoline (15a). Yellow crystalline powder (3.50 g, 91%), mp 272–274°C. Anal calcd for C₁₉H₁₈ClN₃O₂S (387.86): C, 58.83; H, 4.67; N, 10.83; S, 8.26%. Found: C, 58.74; H, 4.55; N, 10.62; S, 8.16%. IR (KBr): $\nu_{C=N}$ 1594 cm⁻¹. ¹H NMR (DMSO d_6): δ 0.98 (t, J = 8.00 Hz, 3H, CH_3CH_2), 1.00 (t, J = 8.00 Hz, 3H, CH_3CH_2), 1.02 (s, 3H, CH_3), 1.31 (s, 3H, CH₃), 1.62–1.78 (m, 2H, CH₂CH₃), 1.81– 2.00 (m, 2H, CH_2CH_3), 2.97 (d, J = 18.00 Hz, 1H, CH_aH_b), 3.00 (d, J = 18.00 Hz, 1H, CH_aH_b), 3.22 (d, J = 18.00 Hz, 1H, 5-CH_aH_b), 3.28 (d, J = 18.00 Hz, 1H, 5-CH_aH_b), 7.12–7.20 (m, 3H, ArH), 7.25–7.31 (m, 4H, ArH), 7.42–7.50 (m, 3H, ArH), 7.55–7.61 (m, 4H, ArH), 8.00 (d, J = 8.00 Hz, 1H, ArH), 8.21 (d, J = 8.00 Hz, 1H, ArH). MS (EI): m/z (%) 389 (M, Cl^{37} , 0.22), 387 (M, Cl^{35} , 0.62), 352 (M⁺ - Cl, 100), 337 (50), 330 (35), 323 (60), 306 (10), 294 (4), 170 (5), 156 (15), 130 (20), 91 (40).

(3*a*RS) 3*a*-Chloro-4,4-dimethyl-2-(4-nitrophenyl)chromane[4,3-d]- $\Delta^{1,9b}$ -[1,2,3]thiadiazoline (15b). Yellow crystalline powder (2.20 g, 60%), mp 247– 248°C. Anal calcd for C₁₇H₁₄ClN₃O₃S (375.81): C, 54.32; H, 3.75; N, 11.18; S, 8.53%. Found: C, 54.01; H, 3.68; N, 10.98; S, 8.46%. IR (KBr): $\nu_{C=N}$ 1605 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 1.43 (s, 6H, 2 CH₃), 6.97–7.15 (m, 4H, ArH), 7.48–7.55 (m, 3H, ArH), 8.25 (d, J = 8.00 Hz, 1H, ArH). MS (EI): m/z (%) 377 (M, Cl³⁷, 0.21), 375 (M, Cl³⁵, 0.64), 340 (100), 325 (30), 310 (25), 308 (8), 264 (65), 194 (20), 174 (11), 159 (15), 89 (70).

(3aRS) 3a-Chloro-2-(4-nitrophenyl)spirochromane(4,1')cyclohexane[4,3-d]- $\Delta^{1,9b}$ -[1,2,3]thiadiazoline (**15c**). Yellow crystalline powder (3.40 g, 83%), mp 273–275°C. Anal calcd for C₂₀H₁₈ClN₃O₃S (415.87): C, 57.75; H, 4.36; N, 10.10; S, 7.70%. Found: C, 57.55; H, 4.33; N, 10.00; S, 7.40%. IR (KBr): $\nu_{C=N}$ 1614 cm⁻¹. ¹H NMR (DMSO-d₆): δ 1.19–2.22 (m, 10H, (CH₂)₅), 7.18–7.21 (m, 4H, ArH), 7.59–7.69 (m, 3H, ArH), 8.02 (d, J = 8.00 Hz, 1H, ArH). MS (EI): m/z (%) 417 (M, Cl³⁷, 0.11), 415 (M, Cl³⁵, 0.32), 380 (100), 358 (40), 344 (10), 326 (10), 306 (15), 284 (14), 277 (18), 260 (10), 213 (9), 115 (25), 91 (50).

Preparation of Ethoxythiadiazolines 16a-c

Boiling of chlorothiadiazolines **15a–c** (0.01 mol) in 100 ml absolute ethanol was carried out for 1/2 h. The solvent was evaporated and crystallization of the residue from ethanol afforded the ethoxythiadiazolines **16a–c**.

(3aRS, 4RS)-3a-Ethoxy-4-ethyl-4-methyl-2-(4-nitrophenyl)-3a,4,5,9b-tetrahydronaphtho[1,2-d]- $\Delta^{1,9b}$ -[1,2,3]thiadiazoline (16a). Red crystals (2.7 g, 70%), mp 115–117°C. Anal calcd for $C_{21}H_{23}N_3O_3S$ (397.7): C, 63.45; H, 5.87; N, 10.57; S, 8.06%. Found: C, 63.15; H, 5.72; N, 10.39; S, 7.89%. IR (KBr): $\nu_{\rm C=N}$ 1600 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 0.99 (t, $J = 8.00 \text{ Hz}, 3\text{H}, CH_3\text{CH}_2$, 1.00 (t, J = 8.00 Hz, 3H,*CH*₃CH₂), 1.02 (s, 3H, CH₃), 1.21 (s, 3H, CH₃), 1.30 (t, J = 8.00 Hz, 3H, CH_3CH_2O), 1.42 (t, J = 8.00Hz, 3H, CH₃CH₂O), 1.61–1.79 (m, 2H, CH₂CH₃), 1.81–2.05 (m, 2H, CH_2CH_3), 2.40 (q, J = 8.00 Hz, 2H, CH_3CH_2O), 2.66 (q, J = 8.00 Hz, 2H, CH_3CH_2O), 2.98 (d, J = 18.00 Hz, 1H, 5-CH_aH_b), 3.02 (d, J = 18.00 Hz, 1H, 5-C H_a H_b), 3.22 (d, J = 18.00 Hz, 1H, CH_aH_b), 3.28 (d, J = 18.00 Hz, 1H, CH_aH_b), 6.99-7.21 (m, 3H, ArH), 7.25-7.31 (m, 4H, ArH), 7.42-7.50 (m, 3H, ArH), 7.55-7.63 (m, 4H, ArH), 8.10 (d, J = 8.00 Hz, 1H, ArH), 8.21 (d, J = 8.00 Hz)1H, ArH). MS (EI): *m/z* (%) 397 (M, 35), 368 (21), 352 (15), 323 (20), 294 (10), 170 (15), 130 (35), 91 (100).

(3aRS) 3a-Ethoxy-4,4-dimethyl-2-(4-nitrophenyl)chromane[4,3-d]- $\Delta^{1,9b}$ -[1,2,3]thiadiazoline (**16b**). Red crystals (3.0 g, 80%), mp 135–137°C. Anal calcd for C₁₉H₁₉N₃O₄S (385.42): C, 59.20; H, 4.96; N, 10.90; S, 8.31%. Found: C, 58.91; H, 4.91; N, 10.81; S, 8.21%. IR (KBr): $\nu_{C=N}$ 1587 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 1.08 (t, *J* = 8.00 Hz, 3H, *CH*₃CH₂O), 1.56 (s, 3H, CH₃), 1.68 (s, 3H, CH₃), 3.02 (q, *J* = 8.00 Hz, 2H, CH₃*CH*₂O), 7.02–7.08 (m, 3H, ArH), 7.27– 7.39 (m, 4H, ArH), 7.93 (d, *J* = 8.00 Hz, 1H, ArH). MS (EI): *m*/*z* (%) 385 (M, 56), 356 (24), 340 (18), 325 (23), 295 (16), 252 (17), 145 (19), 139 (11), 127 (78), 111 (36), 97 (55), 83 (59), 73 (50), 55 (100).

(3aRS) 3a-Ethoxy-2-(4-nitrophenyl)spirochromane(4,1')cyclohexane[4,3-d]- $\Delta^{1,9b}$ -[1,2,3]thiadiazoline (**16c**). Red crystals (3.40 g, 83%), mp 150–152°C. Anal calcd for C₂₂H₂₃N₃O₄S (425.48): C, 62.09; H, 5.44; N, 9.87; S, 7.53%. Found: C, 61.85; H, 5.34; N, 9.68; S, 7.40%. IR (KBr): $\nu_{C=N}$ 1596 cm⁻¹. ¹H NMR (DMSO-d₆): δ 1.07 (t, J = 8.00 Hz, 3H, CH_3 CH₂O),1.15–2.25 (m, 10H, (CH₂)₅), 2.92 (q, J = 8.00 Hz, 2H, CH₃CH₂O), 7.18–7.22 (m, 4H, ArH), 7.59–7.69 (m, 3H, ArH), 8.00 (d, J = 8.01 Hz, 1H, ArH). MS (EI): m/z (%) 425 (M, 30), 396 (20), 380 (50), 358 (20), 326 (17), 277 (30), 260 (20), 115 (30), 89 (100).

ACKNOWLEDGMENT

Thanks are due to the National Research Centre, Dokki, Cairo, Egypt for the financial support and for all the given facilities.

REFERENCES

- Harradence, R. H.; Hughe, G. K.; Lions, F. J Proc Roy Soc N S Wales 1939, 72, 273–283; Chem Abstr 1939, 33, 6841¹.
- [2] Dann, O.; Volz, G. Ann Chem 1965, 685, 167-176.
- [3] El-Desoky, S. I.; Heterocycl Comm 1996, 2, 559– 565.
- [4] Bakthavatchalam, R.; Ramana, D. V.; Ramadas, S. R. Sulfur Lett 1987, 5, 103–108.
- [5] Maiti, S. B.; Chatterjee, A.; Raychaudhuri, S. R. Indian J Chem, Sec B 1984, 23b, 203–205.
- [6] Flowers, W. T.; Robinson, J. F.; Taylor, D. R.; Tipping, A. E. J Chem Soc, Perkin Trans 1 1981, 349–355.
- [7] El-Bahaie, S.; Bayoumy, B. E. Rev Roum Chim 1991, 36, 209.
- [8] Crossland, I. Acta Chem Scand 1976, 30, 787– 789.
- [9] Hegab, M. I.; Abdel-Megeid, F. M. E.; Gad, F. A.; Shiba, S. A.; Søtofte, I.; Møller, J.; Senning, A. Acta Chem Scand 1999, 53, 133–140.
- [10] El-Essawy, F. A. G.; Yassin, S. M.; El-Sakka, I. A.; Khattab, A. F.; Søtofte, I.; Madsen, J.; Senning, A. J Org Chem 1998, 63, 9840–9845.
- [11] Kabbe, H. J. Synthesis 1978, 886-887.
- [12] Auwers, K. von.; Mauss, W. Chem Ber 1928, 61B, 2545–2549.